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Abstract 

We present a translucent QoS management optimization framework for systems that must satisfy 
application needs along multiple dimensions such as timeliness, reliability, cryptographic security 
and other application-specific quality requirements. The architecture of the system consists of a 
semantically rich (in terms of customizable and expressiveness) QoS specification interface for multi- 
dimensional QoS provisioning, a quality-of-service index model to help the user make the quality 
trade-off decision, and a unified QoS-based admission control and resource planning system.  The 

semantically rich QoS specification interface allows the user or system administrator to define fine- 
grained service requests in terms of quality or rate of service. The QoS index model is designed to 
be flexible and policy driven. The unified QoS-based admission and resource control facilitates the 
deployment of various QoS policies to meet performance objectives for specific service optimizations. 
Finally, the overall architecture enables us to quantitatively measure QoS, and to analytically plan 
and allocate resource. 
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1    Introduction 

Quality of Service (QoS) control is considered an important user demand and therefore receives wide 
attention, especially in the areas of computer network and real-time multimedia system research, 
and in commercial markets as well. 

Typically, service characteristics in existing systems are fixed when systems are built, therefore 
they often do not give users any real influence over the QoS they can obtain. On the other hand, 
multimedia applications and their users can differ enormously in their requirements for the rate of 
services and resources available to them at the time of use of the application systems. Therefore 
there is an increasing need for customizable services that can be tailored for the end users' specific 
requirements. 

In the meantime, new and improved systems [Pro96] are placing more and more complex demands on 
the quality of service that are reflected in multiple criteria over multiple quality dimensions. These 
QoS requirements can be objective in some aspects and subjective in others. Moreover, because of 
the manifold and subjective nature of user quality demands, it is very hard to measure whether the 
provided quality fulfills the stated demands without guidance and input from end clients. 

One issue is the QoS Tradeoff where a user of an application might want to emphasize certain aspects 
of quality, but not necessarily others. Users might tolerate different levels of service, or could be 
satisfied with different quality combination choices, but the available system resource might only be 
able to accommodate some choices but not others. In situations where a user is able to identify a 
number of desirable qualities and rate them, the system should be able to reconcile these different 
demands to maximize the user's preference and to make the most effective use of the system. So it 
is important for a system to provide a large variety of service qualities and to accommodate specific 
user quality requirements and delivery as good service as it can from the users' perspective. 

A similar issue to QoS Tradeoff is Resource Tradeoff. In this case the tradeoff refers to the reconcil- 
ing or balancing of competing resource demands. Resource Tradeoff is often transparent to the user 
but can be of great help in accommodating user requirements including QoS Tradeoff, especially 
when the availability of several different resources is not balanced. It arises when an application is 
able to use an excess of one resource, say CPU power, to lower its demands on another, say network 
bandwidth, while maintaining the same level of QoS. For example, video conferencing systems often 
use compression schemes that are effective, but computationally intensive, to trade CPU time for 
network bandwidth. If the bandwidth is congested on some intermediate links (which is often the 
case), this benefits the system as a whole. In the case of a mobile client with limited CPU and 
memory capacity but sufficient link speed with a nearby intermediate powerful server, the com- 
putational expensive speech recognition, silence detection and cancelation, and video compression 
could be carried out on the nearby server. For proxy servers which act as transcoders/transceivers 
besides caching data, the proxy servers can distill data for low bandwidth clients (when both server 
and client have fast CPU, memory and disk bandwidth, but the network link speed in between is 
limited). 

The rest of the paper is organized as follows: Section 2 gives an overview of the QoS management 
optimization system. Section 3 classifies and formulates our QoS optimization problems. Section 
4 discusses the user specification interface and mechanisms for QoS specification acquisition. Sec- 
tion 5 discusses the design principles for the QoS optimization. Section 6 and 7 presents various 
optimization algorithms for solving our QoS management optimization problems. 



2    System Overview 

We have proposed a translucent QoS framework[Lee97][RLLS97] for QoS management in systems 
that must satisfy application needs along multiple dimensions such as timeliness, reliability, cryp- 
tographic security and other application-specific quality requirements. The architecture consists of 
a semantically rich (in terms of customizability and expressiveness) QoS specification interface for 
multi-dimensional QoS provision, a quality-of-service index model to help the user make the quality 
trade-off decision, and a unified QoS-based admission control and resource planning system. 

The seniantically rich QoS specification interface allows the user or system administrator to define 
fine-grained service requests in terms of quality or rate of service. The QoS index model is designed 
to be flexible and policy driven. The unified QoS-based admission and resource control facilitates the 
deployment of various QoS policies to meet performance objectives for specific service optimizations. 
Finally, t lie overall architecture enables us to quantitatively measure QoS, and to analytically plan 
and allocate resources. 

The system can be used to continuously monitor and adjust clients' level of service in light of the 
dynamically changing operational environment (of clients and resources). We also develop quality 
measures and indicators that will enable the system to emphasize quality, effectiveness and efficiency 
in the delivery of the services. 

Our QoS specification allows applications and users to put values on the different levels of service 
that the system can provide. When "value" is taken literally, this means that our model is able to 
facilitate market-efficient resource distribution. Such a system has considerable potential, especially 
in solving bandwidth problems of the increasingly crowded Internet. 

Figure 1 gives a pictorial view of our QoS management optimization system. 

Task Profiles 

£«'T*^ 

Figure 1: In and Out of the QoS Management Optimization Module 



3    Problem Taxonomy, Modelling and Complexity 

3.1 Problem Taxonomy 

We classify the problem based on resources and QoS dimensions as follows: 

• Single Resource Single QoS Dimension: SRSD 

• Single Resource Multiple QoS Dimension: SRMD 

• Multiple Resource Single QoS Dimension: MRSD 

• Multiple Resource Multiple QoS Dimension: MRMD 

Since SRMD is a superset of SRSD, and MRMD a superset of MRSD, SRMD and MRMD will be 
treated directly. 

The reason for addressing SRMD is that we could develop efficient schemes that might not be 
easily achievable for MRMD. The schemes we have for SRMD readily lead us to a QoS-driven single 
resource allocation when only a single resource is of concern (either it is the only resource under 
consideration, or it is relatively more scarce and other resources are abundant). For instance, these 
schemes can be used for QoS-driven disk, memory, network bandwidth or other shared resource 
management and allocation, as well as for processor scheduling. 

Since resource tradeoff is one of the main interests of our research, we will consider resource tradeoffs 
whenever applicable. That is, whenever multiple resources are involved, tradeoffs among them will 
be handled by default. 

3.2 Problem Formulation 

Consider a system with multiple independent applications and multiple resources. Each application, 
with its own quality-of-service requirements, contends with other applications for finite system 
resources. Let the following be given 

Ti, T2, ..., Tn — tasks (or applications) 
i?i, i?2) • • • 1 Rm        — shared system resources 
Qii) Qi2i ■ • • 1 Qidi    — quality-of-service dimensions for task Ts 

Each Ri is a set of non-negative values representing the possible allocation choices of the ith shared 
resource. The set of possible resource vectors, denoted as R, is given by R = Ri X • • • X Rm. Each 
shared resource is finite, so we also have rmax = (rj13*,..., r™ax). 

Similarly, each Qij is a finite set of quality choices for the ith task's jth quality-of-service dimension 
and we define the set of possible quality vectors by Qi = Qn X ■ • • X Qid{. 

Associated with each T; is an Application Profile and User Profile. An Application Profile comes 
from an application designer, while a User Profile provides user-specific quality requirement associ- 
ated with each session. A user can either instantiate the attributes of the default application profile, 



by selecting one of many templates supplied with the application, or the user can supply their own 
merit and reward functions with respect to different levels of qualities. 

Application Profile: consists of a QoS Profile and a Resource Profile. 

• A QoS Profile consists of 

— Quality Space — Qi 

— Quality Index — a bijective function 

Jij  '• ^cij     ^  l-*-) A • • •) IWijIj 

that preserves the ordering, i.e., if ^i is "better than" q2, then fij(qi) > fij{q2)- Since fij 
is bijective, it has an inverse f~^ : {(y,x) | (x,y) £ /}, i.e. ffj1 : {1, 2,..., \Qij\} -» Qij. 

For simplicity, in the rest of this paper we will also use Qij and qij to represent their 
corresponding fij-indexed quality sets and quality points. This should not cause any 
confusion as the context clearly determines whether the original quality specification or 

index value is under consideration. 

— Dimension-wise Quality Utility — U{j : Qij —> IR 

— Application Utilities — a QoS or rate of service measure 

Ui :Qi ->TR 

It could be defined as a weighted sum of M,J 

di 

Ui{li) = ^2wijuij(<lij) 
i=i 

We require that Ui is non-decreasing in all di arguments and that it is non-negative. 

• A Resource Profile for Tt- defines a relation between R and Qi: 

which describes a list of potential resource allocation schemes to achieve each quality point q. 

Note that both R and Qi have partial orderings which |=t- must respect. That is, if rj |=j qi, r2 \=i q2, 
and ri > T2, then we will have q\ •£ q2- This partial ordering is required to ensure that utility is 
non-decreasing with respect to resources. In other words, more resources should not lead to reduced 
quality (and thus utility), which is reasonable and natural. 

It is important to note that we can only define a relation but not a function between Qi and R. For 
a given value of q, multiple resource allocation schemes could be used to achieve the same level of 
quality; likewise, for a given resource allocation, one could use the resource(s) to improve different 
QoS dimensions, which could yield different quality results. The scatter plot in Figure 2, which 
depicts a possible relation between resource and quality, might help us visualize this. 

User Profile: mostly an instantiation of the Application Profile 

• An Application QoS Profile provides a template, which a user could instantiate to create a 
User Profile. A user could also supply his/her own QoS Profile which supersedes those provided 
by the application. Furthermore, a User Profile could specify its QoS constraints. 
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Figure 2: Scatter of Resource and Quality 

QoS Constraint: is the minimum QoS requirement specification 
mm 
i2    ) ■ ■ 

mim 
<1idi  > 

When the minimum requirements cannot be satisfied, the user of task Tt- might choose not to 
run Ti at all. 

Alternatively we could let the user implicitly specify the gf"n through utility functions by 
setting Ui(q) = 0 for all q < g™m. We have yet to complete a user-interface study to decide 
whether this approach will compromise the simplicity of the user-interface. For now, we will 
use this QoS Constraint approach. 

• A user might explicitly specify a cap, or Saturation Point, 9fax, on its quality requirement 
to indicate that further improvements beyond it are not likely to be perceived or appreciated. 
Similar to the discussion of qmm above, the maximum quality constraint could be handled by 
setting Ui(q) = ^(qf1**) for all q > q™ax. 

To simplify our presentation, we did not explicitly use this aspect in the algorithms presented 
in this paper. 

In the rest of the paper, the Task Profile will be used to represent the effect of using an application 
profile that has been instantiated by the user profile. The terms Application Profile, User Profile, 
and Task Profile might be used interchangeably which denotes an instantiated Application Profile 
with possibly added QoS Constraint and QoS Saturation Point. 

For the overall system, with multiple applications possibly requiring multiple resources, we have the 

System Utility u : Q\ x • • • x Qn —»■ 1R, which could be defined as: 

• A (weighted) sum of Application Utilities 
n 

u(qi,...,qn) = ^2wiUi(qi) 

for differential services, where U{ is non-decreasing, and 0 < w; < 1 could be the priority1 

of Ti: or 
1 Note that the algorithms or schemes presented in this paper are for the weighted sum where the weights are set 

to 1 for simplification to present the algorithms. 



• u — u*, where 

for "fair" sharing. 

v>*(qu...,qn) = .min «,•(& 
z=l...n 

The goal is to assign qualities (g,-) and allocate resources (r,-) to tasks or applications, such that the 
system utility u is maximized. Therefore we have the following Problem Function formulation 

maximize   u(qi,...,qn) 

subject to   qi > q™m or qt: — 0 ,    i = 1,..., n,     (QoS Constraints) 

(1) 
y^ r^ < r™ax , j = 1,..., m,    (Resource Constraints) 
i=l 
ri \=i qi , i= l,...,n. 

3.3    Problem Complexity 

This combinatorial problem could also be formulated as follows. Let %,..., Ki\QA be an enumeration 
of the quality space, Qi, for task T,-. Let /Ojji,.. -,PijN{j be an enumeration of the resource usage 
choices (tradeoffs among different resources) associated with Kij for T;, where Nij is the number of 
such resource usage choices. (In particular we should always have pijk (=j Kij.) 

Let Xijk = 1 if task Ti has been given quality point Kij and resource consumption p^k, and Xijk = 0 
otherwise. 

n   \Qi\ N, 

maximize    X] X] X! xijkui(Kij) 
i=i j=i fc=i 

subject to   Y1J2J2 xiJkPijki < r™ax,   £ = 1,..., m, 
i-\ j-\ k=i (2) 

IQ.I Nij 

Y112 Xiik -1' i = i,...,n, 
3 = 1 k=\ 

Xijk € {0,1}, i= l,...,ra, j = l,...,|<2i|, k= l,...,Nij. 

Note, that pijkt is just the fth coordinate of the vector pijk- 

Therefore all the instances of our problem can be viewed as special cases of the general (mix) Integer 
or Nonlinear Programming problems. 

Proposition 1 SRSD, SRMD, MRSD, and MRMD are all NP-Hard problems. 

Proof    Since SRSD is a special case of the other three, we only have to show that SRSD is NP-Hard. 



„max 
) 

(3) 

For SRSD, we have m = Njj = 1 and thus k = £ = 1. System (2) becomes 

n   \Qi\ 

maximize   yiy*, XjjiUjJKij) 
i=l j=l 

n   \Qi\ 

subject to   ^^Xjjipijn < rm 

i=lj=l 

\Qi\ 

J2xiji ^ !' i = l,...,n, 
i=i 

ajjji G {0,1}, i=l,...,n, j= l,...,\Qi\. 

The 0-1 Knapsack Problem is known to be NP-Hard [MT90]. It can be described as follows. Given 
a set of n items and a knapsack of capacity c, with pi and W{ the profit and weight of item i 
respectively, select a subset of the items so as to 

n 

maximize    Y^ piXi 
=i 

n 

SUtJ 
»=1 

i=l 

n 

lbject to   22 wixi ^ c (4) 

z;G{0,l},     i = l,...,n, 

We can therefore reduce the 0-1 Knapsack Problem to SRSD by setting 

Qi =  {(i)} 
ui{m)  = Pi 
rmax     =     c 

Pilll      =      Wi 

and have the 0-1 Knapsack Problem's Xj represented by xm in the SRSD case. □ 

4    User Specification Interface for QoS Provision 

At the crux of our translucent QoS management optimization system lies the QoS specification. 
First, it is important that we provide powerful and semantically rich QoS specifications that they 
system and the user can use for service optimization. Equally important we need to provide a user 
friendly interface that facilitates specification acquisition. 

The reason for the emphasis on QoS specification and interface design might not be obvious, but the 
reader should see the point shortly as the quality dimensions of typical multimedia systems, QoS 
tradeoff and resource tradeoff issues are presented. 

4.1    Quality Dimensions 

We consider the following example quality dimensions, by no means exclusive, with their corre- 
sponding dimensional space ordered from worst to best: 

7 



• Cryptographic Security (encryption key-length) : O(off), 56, 64, 128 

• Data Delivery Reliability, which could be 

- maximum packet loss : in percentage 

- expected packet loss : in percentage 

- packet loss occurrence : in probability 

• Video Related Quality 

- picture format2: SQCIF, QCIF, CIF, 4CIF, 16CIF 

- color depth(bits): 1, 3, 8, 16, 24, ... 
Mack/white, grey scale to high color 

- video timeliness — frame rate(fps): 1, 2, ..., 30 

low-frame-rate cartoon or animation to high motion picture video 

• Audio Related Quality 

- sampling rate(kHz): 8, 16, 24, 44, ... 
AM. FM, CD quality to higher fidelity audio 

- sample bit(bits): 8, 16, ... 

- audio timeliness — end-to-end delay(ms): ..., 100, 75, 50, 25, ... 
(Note that we list these in worst-to-best order, not numerically increasing.) 

The specification above contains ellipses ("...") to indicate that more choices could have been 
listed. Ignoring extra choices for a moment, the total number of different choices ("quality points") 
in the example can be calculated: 

di 

\Qi\ = II \Qü\ = 4x1x5x5x30x4x2x4 = 96,000 

(A single option in data delivery reliability and 30 different frame rates were chosen for this example.) 
With these many quality points it would be completely out of the question to have the user specify 
the quality on a point-by-point basis. Therefore a pragmatic method is needed to address the issue. 

4.2    Application Utility and QoS Tradeoff 

Because QoS is often multi-dimensional, and because its measure could be objective or subjective 
(user or session dependent), a user might want to make some quality tradeoff, especially when 
resources (processing power or the link speed) on or between the end and intermediate nodes might 
dynamically change. For example, a user (or task Tj) might have a desired quality level, but be able 
to tolerate certain lower quality if there are insufficient resources to obtain the desired quality. It is 
therefore to the user's advantage for a system to provide an interface that allows the user to make 
implicit or explicit quality tradeoffs. 

2The choices listed here come from [ITU95] [Say96].   Other standards, such as MPEG [MGF96] [LG91] [Say96] 
could have been used instead. 



In our previous work [LRM96], specifically the RT-Phone (a video conferencing system) , we used a 
leveled QoS specification scheme of a simple one to ten scale. These scales are statically mapped to 
certain quality choice combinations, where many of the quality choices therefore left out (as we can 
think about it as a "QoS digitization"). At another level (for more involved users), individual knobs 
(sliding bars) were provided that a user could tune on each quality dimension. This second level 
had many fewer choices than listed above in Section 4.1. We therefore have extended our previous 
work, to allow each task Tj to specify its minimum acceptable quality (<?f"n), saturation level (q™ax) 
and application utility function as part of the task profile (application profile instantiated with user 
profile). Thus our QoS management optimization engine will work most effectively to help each 
task achieve as high level of quality as possible, subject to resource constraints and the management 
policy deployed in the system. 

Application utility functions are conceptually easy to imagine but difficult to construct. As pointed 
out in Section 4.1, it is clearly infeasible to make the user specify the utility of every quality choice 
on a point-by-point basis. There are simply too many choices. Instead, one could make the user 
specify the utility of selected points and then interpolate in order to get the utility of the rest. This 
might work well in the one-quality dimension case, but in the multi-dimensional case one would 
need a dense net of selected points and therefore again need too many points. 

While we would like a user to provide the service optimization system with the translucent and 
semantically rich service requirement specification so that the optimization module can best accom- 
modate the user's request, we also want to ensure that methods and mechanisms are in place in 
the system that will facilitate the delivery of these specifications from the user. In other words, we 
want to develop a measure and merit scheme as well as a reasonably user-friendly interface that 
will pose less of a burden on the user without sacrificing the semantically rich capability of the 
specification interface. Therefore a QoS index model is proposed from which dimension-wise quality 
utility functions are defined. 

4.3    Quality Index 

Certain quality dimensions, such as frame rate, have easily defined utility functions while others, 
such as picture format and end-to-end delay, are in non-numeric, non-uniform, or non-increasing 
order which require a quality to numeric mapping. Therefore the Quality Index is introduced, which 
maps qualities to indices. 

The concept and the use of Quality Index is illustrated in the context of an example application. 

Consider task T;, which could be a video conferencing system. Tj's quality dimensions, quality space 
and Quality Index are as follows: 

Picture format: Assume it uses the H263 [ITU95] standard format 

Format:    SQCIF    QCIF    CIF    4CIF    16CIF 
Quality Index: 1 2 3 4 5 

The corresponding Quality Index is therefore Qn = {1,2,3,4,5}. 

Color depth: Assume that T,- has 1, 3, 8, 16, and 24 bit color depths available for the user to 
choose. 



Depth:    1    3    8    16    24 
Quality Index:     12    3     4      5 

Therefore <3,-2 = {1,2,3,4,5}. 

Frame rate: T; allows frame rates ranging from lfps to 30fps in steps of lfps.  These will map 
directly onto Qis = {1,2,..., 30}. 

Rate (fps):     1    2    ...     30 
Quality Index:     1    2    ...     30 

Encryption key length: For T,-, encryption will be either on with 56-bit encryption or off. There- 
fore we have Qi4 = {1, 2}. 

Key length:     (none)    56-bit 
Quality Index: 1 2 

Audio sampling rate: Assume T; provides audio sampling rates from AM-quality (8 kHz) to CD- 
quality (44 kHz). 

Sampling rate (kHz):    8    16    24    44 
Quality Index:    12      3      4 

Thus we have Qi$ = {1, 2, 3,4}. 

Audio bit count: Assume that Tt provides only two sampling sizes, 8 bits and 16 bits. 

Bit count:    8    16 
Quality Index:     1      2 

Therefore Qi% — {1,2}. 

End-to-end delay: Assume that end-to-end delays ranging from 125 ms to 25 ms in steps of 25 ms. 
Since high numbers for end-to-end delay are worse than low numbers, Qij = {1, 2,..., 5} maps 
high number to low indices. 

Delay (ms):     125     100    ...     25 
Quality Index:       1        2      ...      5 

4.4    Dimension-wise Utilities 

Quality points in the multi-dimensional case do not have a complete ordering. The individual dimen- 
sions, however, do. Moreover, some common properties associated with dimensional quality utility 
are observed including: non-decreasing, often quasi-continuous and piecewise concave. Figure 3 
depicts some typical utility function shapes. 

Recall that the application utility U{ for T; is defined in terms of the value accrued when T; achieves 
a certain quality, i.e. Ui : Qi —> JR. As discussed above, when many quality dimensions are involved, 
it is often very difficult for a user to express his/her quality preferences. We therefore provide the 
user with the capability to specify dimension-wise quality utilities. As a result, the application 
utility can then be defined as a weighted sum of dimension-wise quality. This creates an inter- 
esting issue regarding how weights should be assigned. Currently the Analytic Hierarchy Process 
(AHP) [Saa92a][Saa92b] model and the Simple Multi-Attribute Rating Technique (SMART) [Edw97] 
are used to cope with the problem. 

10 



Figure 3: Typical Dimension-wise Utility Functions 

Given the Quality Index, a dimension-wise utility could be defined and hence the application utility. 
Again, an example task profile is presented in the next subsection to illustrate the possible structure 
of dimension-wise utility functions and application utility functions. 

4.5    Example Dimension-wise Utilities and Application Utilities 

Recall that application utility U{ for T; is defined as a weighted sum of the dimension-wise quality 
utilities. 

7 

3=1 

where Ujj are the dimensional utility functions. Example definitions could be: 

Function Comments 

Ui2(qi2) = 100gi2/3 
i*,-3(fc3) = 100(1 - ea«3+6) 

Picture format: linear. 
Color depth: linear. 
Frame rate:  exponential decay, assume T; achieves 50% at 
qi3 = 5 and 95% at q^ — 20.   Therefore a = —0.1535,6 = 
0.0744. 
Encryption: linear. 

Uis(qi5) = 100(1 — e-1-59'5)     Audio sampling rate: exponential decay, T,- achieves 95% at 
gi5 = 2 or 16 kHz. 

Uie{qie) = 50<^6 Audio sampling bits: linear. 
unfair) = 20qi7 End-to-end delay: linear, achieves 100% at the best quality 

point, qi7 = 5 or 25 ms delay. 

Ui4(qi4) = 20(^4- 1) 

Figure 4 depicts the utility curve described above for frame rate. 

Suppose Ti is a remote surveillance system, where video is much more important to the user than 
audio. Assume that SQCIF, gray-scale, low frame rate is fine for video, and there is no need for 
encryption. Therefore, in the example system of section 4.3, we could have the following minimum 
quality specification 

<Tn = (1.1. 2,0,1,1,2) 

11 
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Figure 4: Dimension-wise Utility Function for Frame Rate 

which corresponds to the following minimum quality 

(SQCIF, 1 bpp, 2 fps, no encryption, 8 kHz, 8 bps, 100 ms). 

Since video is more important to the user than audio, an example application utility function for T,- 
could be: 

ui(q1,...,q7) = öUiifei) H \rUi4{qi4)) + l(ui5(qi5) -\ \-ui7(qi7 

video audio 

where video quality is weighted five times more than that of audio. 

4.6    User Interface Consideration 

If a user were to choose quality on a scale of 1 to 10 with some pre-determined quality choices preset 
by the system, the interface would be very simple. 

A more flexible, but also more complicated, scheme would be to have a set of parameterized utility 
curves available for each quality dimension, and to have the user pick the curves and instantiate 
appropriate parameters/coefficients. In our system, the instantiation is carried by letting the user 
graphically specify Satisfaction Knee Point parameters. For the exponential-decay used in the 
previous example (uiz(qü) = 1 — eaqi3+b), the user could specify the 50% and 95% levels. This is 
enough to uniquely determine a and b. For example, a user could specify (5fps, 0.50) and (20fps, 
0.95), and the corresponding utility curve would then be the one shown in Figure 4, with a = —0.1535 
and b = 0.0744. 

It would be ideal to have an interface that could help the user digitize the quality to a certain range 
of scale, and acquire the corresponding utility accordingly. One way could be to move the dimension- 
wise utility function method to the user interface part to synthesize or digitize quality-utility data, 
as it could significantly reduce the quality space searched by the QoS management optimizer. 

12 



5    Issues on Algorithm Choice and Methodology 

5.1    Algorithm Design Issues — Solution Quality vs. Computational Complexity 

As is shown in [LS98] the QoS management optimization problems are NP-Hard. As a consequence, 
there are no optimal solution techniques other than an (possibly complete) enumeration of the so- 
lution spare. On the other hand, QoS management calls for on-line solutions as the optimization 
module will ideally be in the heart of an admission control and adaptive QoS management sys- 
tem. Therefore the goal is to strike the right balance between solution quality and computational 
complexity. 

For more than two decades, many researchers from the fields of mathematics, computer science 
and operations research have been working on the combinatorial optimization and solving NP-Hard 
problems. There are three algorithmic approaches [AL97] [MT90] that have been well studied and 
widely used : 

• enumerative methods that are guaranteed to produce an optimal solution [Iba87a][Iba87b], 

• approximation algorithms that run in polynomial time [Sah75][IK75], and 

• heuristic techniques (under the general heading of local search) that do not have a priori 
guarantee in terms of solution quality or running time, but provide a robust approach to 
obtaining a high-quality solution to problems of a realistic size in reasonable time [AL97]. 

An important attribute is the incremental and state-reuse property of a scheme, so as to avoid having 
to completely redo expensive computations to accommodate the dynamic arrival and departure of 
tasks. Also, we ensure that all algorithms should be formulated so that the the search for an optimal 
solution can be terminate at any time while still reaching a feasible, but sub-optimal and hopefully 
good, solution. These two properties are essential for an algorithm to be used in an online (or 
near-online) environment. 

Therefore a series of schemes have been developed that give approximation, approximation with 
bound, and exact solutions, with increased asymptotic computational complexity. These algorithms 
use various optimization techniques including linear and nonlinear programming, constraint relax- 
ation, basic dynamic programming, branch-bound, advanced dynamic programming with addition 
of dominance rules, direct and local search schemes. In addition parallel algorithms are being de- 
veloped to speed up the computation process. 

It will be necessary to conduct extensive empirical studies to evaluate the practical performance of 
these algorithms when deployed under different system setups and task profiles. For instance, the 
systems to which QoS management optimization engine could be deployed could range from an end- 
node multi-media workstation, small or medium scale proxy/transceiver3 servers, medium or large 
(with firewall and routing capability) gates [Lab97], and on-demand media (news, video, stock quote, 
game) servers. These studies allow comparison of the relative performance of the the algorithms 
and answer questions such as whether algorithms are robust [Pis95] enough to cover multiple cases, 
or whether combination algorithms might prove useful.   In the latter case, the QoS management 

'Data distillation for low-link-speed mobile or other clients for instance. 
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optimization engine could fire an algorithm based on the particular data instance exhibited by the 
profiles of application/user sessions in the system. 

Another important issue, which is policy-dependent but would affect the actual algorithm design, 
is the stability of the task quality assigned to existing tasks in the system. In the case where policy 
requires that quality not degrade for certain tasks, some algorithms might not be suitable , while 
others might be more appropriate. 

5.2    Resource-Utility Scatter to Graph Structure Composition 

Due to the multi-dimensional and potentially subjective nature of quality of services, there is often 
no complete ordering among quality-of-service points, even for individual tasks. Only a scatter for 
R and U can be drawn shown in Figure 5. So some structural composition is required for those 
algorithms that call for mapping from resource to utility. Specifically, an R-U (Resource to Utility) 
function/graph is constructed for each task through QoS Profile and Resource Profile. An R-U 
graph can be constructed by listing each valid quality point's resource usage and its corresponding 
utility. 

V) 

*     • :• 
:• 

• « 
• •       • 

 'U *  
•       • • 

• •     * 

resource 

Figure 5: Scatter of Resource and Utilities 

Recall that given a resource allocation to a task, one could use the resource to improve different 
QoS dimensions, which could therefore lead to different utility values. But the most valued QoS 
point for each resource value can be picked, as intuitively, we certainly want to assign resources to 
those quality points with the highest utility value. 

We therefore define a function g{ : R —± IR, such that 

gi(r) = max{ Ui(q) \r\=iq) (5) 

and define hi : R —¥ V(Qi) to retain the quality points associated with the utility value gi{r): 

hi{r) = { q £ Qi | Ui{q) = gi(r) A r 1=; ? } (6) 

Then an R-U graph can be generated for each task, each of which would be a step function (perhaps 
with multiple level of steps). 
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6    SRMD Algorithms 

6.1    An Approximation Scheme for SRMD 

By constructing the convex hull for each of gi (see Definition 5) functions we get piece-wise linear 
relaxation functions g°, i = 1.. .n. The gradients of of g° can be used as' a heuristic to allocate 
resources among these tasks4. 

Let 

Q = 

be the utility function </;'s discontinuity points in increasing r-order (therefore increasing «-order 
as well), and we will refer it as r-u-pair list. Denote by rc the current remaining resource capacity 
after certain resource has been allocated; s_list[i].t, s_list[i].r, sJistfi].« the task id, the associated 
r-value and «-value of the corresponding r-w-pair list; and r[i] the resource allocated for T{. 

approx_srmdl (n, Ci,..., Cn) 
1. for i = 1 to n do 
2. C[ := convexJiulLfrontie^C,) 
3. u[i\ := 0 
4. r[i] := 0 
5. sJist= merge(Ci,..., C'n) 
g „c ._ j,max 

7. u := 0 
8. for j = 1 to \sJist\ do 
9. i := sJist[j].t 

10. ß - sJist[j].r - r[i] 
11. if (ß < rc) then 
12. rc := rc - ß 
13. r[i] := sJisifjj.r 
14. u[i] := sJisf^'].« /* Update allocation info for Ti.  */ 
15. else 
16. break 
17. for i = 1 to n do 
18. g[t] := hi{r[i\) /* See Definition 6.  */ 
19. u := u-\- u[i] 
20. return (#[1],..., q[n], u) 

Note that each q[i] provides a set of quality choices from which T; (its user, or session manager) 
could choose to make further QoS tradeoffs. 

Notice that in implementation, we actually replace "break" in line 16 with continue (i.e., let the 
loop continue when condition at step 11 does not hold). This means that after the optimal condition 
is violated, the residual capacity (rc) will be greedily filled. The continuation can be thought as a 
post-optimization process. The error bound property to be proved below holds for either cases. 

4 The algorithm and analysis in this section is a clarification and a slight improvement over a similar algorithm 
described in [RLLS98]. 
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Let L = maxf_j |C4|. After the procedure convex-hulLfrontier5 (which takes time 0(nL)) a convex 
hull frontier with non-increasing slope segments (piece-wise concave) is obtained for each task. 
The segments are merged at step 5 using a divide-and-conquer approach with log2 n levels, each 
level has nL comparisons. Merging thus takes time 0(nLlogn). Steps 8 through 16 require 
0(\sJist\) — O(nL). Steps 17 through 19 take 0{n). The total running time of the algorithm is 
thus O (nL log n) + O (nL) = O (nL log n). 

Denote by Si the maximum utility difference between adjacent discontinuity points of C[, i.e., the 
largest increase in utility for task T,- on the convex hull frontier. Let x = maxf=i f>i- Denote by f7opt 
the optimal utility result and Usrm(n the approximation result obtained by algorithm approxsrmdl. 

Proposition 2 Usrmdi is within \ ofUopt, i-e- Uopt - X < Usrmdi < Uopt. 

Proof Note first, that if the residual resource, rc, ends up being zero before executing "break" 
at step 15 (or if j reaches the end of \sJist\), then the solution found is in fact optimal based on 

Kuhn-Tucker condition[PSJJU80], as each g° (represented by C\ in approxsrmdl) is essentially a 
piece-wise concave function. 

Approxsrmdl produces a utility value, C/srmcji, which is feasible. Therefore we have C4rmdi < C/0pt- 

Suppose that convex hull frontier segments (ordered and stored in sJist) are consecutively used 
(with corresponding quality upgrade and added utility) until the first segment, s, is found that 
requires more resource than residual resource capacity rc to realize the extra utility at the end of 
the segment s (remember that the convex hull segments are imaginary linear relaxation of the real 
utility functions). 

Let the two end points of the critical segment s be (rsi,usi) and (rs,-+i, ttst-+i) in C[. 

Based on Kuhn-Tucker condition and Dantzig[Dan57] upbound, we have 

TT ^ TT 1     /    C \ USl + l   ~   Usi 
Uopt    <    t/srmdl + (r   - rsi) —■ —- 

fsi+1       Tsi 

<     t/srmdl + (rsi+l ~ rsi) ;  
Tsi-\-l      rsi 

==     t-/srmdi "T Usi^-i       Usi 

and we know that MS;+I — usi < x, therefore Uopt — Usrmdi <6 X- n 

Remark: To give a feel for how tight the bound is from below, examine two cases (see Figure 6) 
when the results are suboptimal. The reason for the first case is sub-optimality is due to the convex 
hull approximation error (where one or more intermediate utility points are bridged and removed 
when we construct g° (or C'), from gi (or C;); the reason for the second case is the consequence of 
the greedy heuristic (no costly backtracking after optimal condition is violated) near the end of the 
approxsrmdl optimization process. 

Case 1. When interior (intermediate) points are bridged over and dominated by the critical convex 
hull segment s. 

5Overmars & Leeuwen's [OL81] algorithm, or simply the quickhull [PS85] or Graham-Scan [CLR90] when Ci are 
not pre-sorted. 

6Except in the degenerate case where \ = 0, and Uopt — f/srrncji = X = ^opt = ^srmdl = 0- 
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Figure 6: Suboptimal Cases 

Let the inferior point bridged over by s with the largest utility be (r,-, Uj), where j > si in the original 
d list of T{. Further assume that rj — rsi < rc, and there is no more elements left in sJist. Then 
when approxsrmdl stops and reports the achieved utility of Ü7srmdii which excludes (rs;+i, usi+i), 
the optimal is in fact Uopt = Usrmdi + (UJ - usi). Since Uj - usi < x, USTmdi < Uopt - X- 

Case 2. When rc > rsj, and there are (rsj,usj) and (rsk,usk) 7 in sJist, where sj.sk > si, and 
their slopes are lower than that of ("^), but (rc - rsi) < rsj, (rc - rsi) < rsk, rsj + rsk < rc, and 
(usj + usk) > usi. By the Dantzig bound, the f7srmdi would be well within x as we^- 

Although approx-srmdl is a polynomial approximation algorithm with a describable and potentially 
small error bound from the optimal result, the bound is not controllable. Section 6.2 presents another 
polynomial scheme with a controllable error bound. 

6.2    An Optimal Solution Scheme for SRMD 

Assume that the resources are allocated in units of r
max/P for some integer P. If, for example, 

P = 100 this would mean that allocation is in integer percentage. Under this assumption, we can 
characterize the structure of the optimal solution and recursively define its value as follows: 

Denote by v(i,p) the maximum utility achievable when the first i tasks are considered with resource 
rmaxp/P available for allocation, and define 

v(i,p)=     max Agi{p') + v(i - l,p - p')} 
p'e{o,...,pj 

(7) 

The set of interesting p' values is in fact just all the (starting) discontinuity points of </j (see Defi- 
nition 5). 

Therefore v(n,P) will be the maximum utility achievable by allocating up to rmax to the n tasks, 
i.e., the best allocation overall. 

7Or a single element with higher utility value than usi given rsi + rc. This case is not shown in Figure 6 
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Based on Equation 7, the following algorithm srmd can be constructed through dynamic program- 
ming. Let 

Mfe) te)> 
denote the utility function g^s discontinuity points in increasing «-order, and qos(i,p) the list of 
QoS allocation choices for T\ through T,- towards v(i,p). 

srmd(ra, P,Ci, ...,C„) 
1. forj9 = 0toPdo 
2. qos(0,p) := nil,v(0,p) := 0 
3. for i: = 1 to n do 
4. qos(i, 0) := m7, v(i, 0) := 0 
5. for p = 1 to P do 
6. u*:=0,j*:=0 
7. for j = 1 to |C,-| do 
8. if (rij > p or /i;(r;j) < g™in) break 
9. u := Uij + v(i-l,p- rtj) 

10. if u > u* then 
11. u*:=u 
12. i* :=j 
13. qos(i,p) := qos(i — l,p—r^*) concat [/^(r;j*)] 
14. u(i,p) := M* 

15. return v(n,P) and qos(n,P) 

The result v(n,P), the utility accrued when 100% of the resource is available, is optimal. Let 
L = max"_j |C,|. The time complexity of the algorithm is O(nLP) or 0(nP2), which is pseudo- 
polynomial. 

One of the plus sides of this scheme (also true for the MRMD scheme described in Section 7.1) is 
its incremental and state-reuse property in which when a new task arrives, previous results can be 
directly reused to avoid the expensive recomputation of the complete new task set. 

When the session length information of tasks are available, the task lists are generally ordered in 
decreasing session length order, so when a task Tn finishes and departs the system (and therefore 
releases some resources), the result for T,-, i = 1,..., n — 1 is already computed and kept in the 
system, that could be reused to make a quick decision (not necessarily to be optimal especially 
when stability policy is in use) on which tasks' qualities could be improved. 

When a priority-based policy alone is emphasized, the task list to be fed into the algorithm will be 
in non-increasing order of task priorities. 

Srmd could to be a practical method for QoS-driven single resource allocation, such as processor 
scheduling in operating systems which support QoS. The algorithm, with minor change, would be 
suitable to deal with the stability problem when a user prefers (or a policy requires) a relative 
consistent quality. 
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6.3    A Polynomial Scheme with Controllable Bound for SRMD 

The algorithm approx.srmd2 to be described will give an approximate quality and resource allocation 
which is guaranteed to have a maximum relative error, s, where 0 < e < 1 is a user-specified value. 
A relative error of e means that the utility Usrmd2 found by the algorithm satisfies 

(1 - e)i70pt < £/srmd2 < Uopt 

where Uopt is the optimal utility. 

Before presenting approxsrmd2, let us define some data structures and operations to be used in the 
algorithm. All utility function g^s discontinuity points are listed in increasing «-order as 

«-(ft) fc)> 

where (°) is the first element, and referred to as r-w-pair lists. We also define the following operation 
for r-u-p&iT lists and r-w-pair elements. 

((::) (::))+(:)=((:::;) (::::)> 
Note, that this operation produces a new r-tt-list that is sorted non-decreasingly in «-value. From 
now on such sorting will be assumed. 

Let A and B be r-«-pair lists. The procedure combine-and-merge will combine A and B into a 
single r-w-pair list. 

combine_Jand_merge(A, B) 
1. foreach 6t £ B 
2. Ai := A + bi     /* Ai is now increasing in u-value.  */ 
3. C := merge(Ai,..., Ak) 
4. return C. 

where k = \B\, and A{, 1 < i < k, are intermediate r-w-pair lists. 

Steps 1 and 2 takes 0(\A\ \B\), step 3 takes 0(\A\ \B\ log |J5|) if we do it through divide-and-conquer 
and merge lists in pairs recursively. So combine.and-merge is 0(|A| \B\ log \B\). 

The procedure resource-sieve trims those r-w-pair elements of list L = (("a)> • • •> .C-")/ wnicn do not 
satisfy r < rmax; and those inefficient elements. By inefficient we mean: for each element ("') and 
element ("i+1) from L, if r,-+i < r^ (and U{ < «,-+1 since elements are sorted) then ("*) is inefficient 
and should be removed from L. Intuitively, we only want to keep those choices that use less resource 
while achieving the same or higher utility. The procedure takes 0(|L|). 

resource_sieve(£, rmax) 
1. i := 1 
2. while i < \L\ do 
3. if r,-+i > rmax then 
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4. 
5. 

Remove lu'+1) from Z 
else 

6. while i > 1 and r8+i < r8- do 
7. Remove ("') from Z 
8. i := ?' — 1 
9. / := / + 1 

10. if /•; > ;max then 
11. Remove ("') from Z 
11. return Z. 

Procedure r<pirtentativeJist trims the r-w-pair list further in 0(|Z|) by removing elements that are 
too close lo other element in terms of «-value. That is, for each adjacent ("') and ("i+1) from Z, if 

(«i+i - »;)/»;+i < 8, then ("!+1) can be presented by ("*) with a discrepancy of at most 8 w.r.t. the 

M-value of (",+ 1) . and therefore (u'+1) can be removed from L. 

representativeJist(Z/, S) 

1- L':=((•-)) 
2. u~ := tu 

3. for i = 2 to \L\ — 1 do 
4. if («" < Ui{l-S)) then 
5. append ("■) to V 
6. u" := Ui 

7. return Z,' 

Given the above procedures, the bounded approximation scheme can be constructed as follows. For 
the sake of simplicity of the complexity analysis to be followed, we introduce some intermediate lists 
■L'ia-i J-'ib and Li. 

approx_srmd2(Ci, •■■; Cn, e) 

1-      £o:=(0) 
2. 8 := e/n 
3. for i = 1 to n do 
4. Lia := combine_and_merge(I/i_i,Ct) 
5. £<,•;, := resource_sieve(iia, r

max) 
6. Z4 := representativeJist(Z;6, 8) 
7. let (") be the element with the largest utility value in Ln 

8. return Q) 

Without resourcesieve and representativeJist the length of the list obtained at step 4 in ap- 
prox-srmd2 could increase exponentially. We will show that with those steps, the length of of 
Li will be bounded by " IH"up/"iOTr,> _|_ 2 L where uup and u\ow are easily determined from d and / 

is a suitable constant. 

Lemma 1 Given two sorted r-u-pair lists A and B, combine_and_merge generates a sorted r-u-pair 
list which contains all the possible combinations of a choice element from A and a choice element 
from B. 
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Proof Since A is sorted, each A; in step 2 of combine „and jmerge maintains its order. Moreover 
A{ contains all new combinations of choices that can be generated by selecting one choice from A 
and the other as 6,- from B. Therefore after the loop at step 1 of combine-andjmerge finishes, all 
possible combinations of one element chosen from A and one element chosen from B are stored 
in Ai, where 1 < i < \B\. The merge at step 3 will therefore generate a single combined sorted list. 
D 

Theorem 1  The approximation of approx_srmd2 is within a bound of e w.r.t. the optimal. 

Proof If we were not to have the trimming operations resourcesieve and representativeJist in 
steps 5 and 6 (denote such lists generated without trimming by L°), we could prove, based on 
Lemma 1, by induction on i that combine „and „merge at step 4 would list all the possible r-w-pair 
combinations for i tasks. It would then lead us to an optimal solution at the expense of exponential 
time complexity in general, since the length of L° would grow exponentially. 

With trimming that removes from L{ every element that is greater (in terms of r-value) than rmax 

in step 5, and the trimming in step 6, the property that every remain element in L{ is a member 
of the complete solution space is maintained. Therefore, the r-w-pair returned in step 7 is indeed 
one valid allocation scheme. It remains to show that the u-value of the returned pair is not smaller 
than 1 — £ times an optimal solution. 

Since resource sieve at step 5 only throws away invalid elements that violate the resource constraint, 
or those that for sure cannot contribute toward the optimal solution, any error will only be caused 
by representative Jist. So it remains to be shown that the relative error caused by representativeJist 
is bounded. 

When Li is trimmed by representativeJist, a relative error of at most 5 (or e/n) is introduced 
between the representative values remaining in the list and the values before the trimming. By 
induction on i, it can be shown that for every element ("„) in L° with r° < rmax, there is an (") 
in Li such that 

(1 - e/nfu0 <u<u°. 

If (üo,pt) € L° denotes an optimal solution to the SRMD problem, then there is an (") G L{ such 
that 

(1 - e/n)nUopt <u< Uopt 

The (u) with the largest u is the value returned by representativeJist and u = USTmd2- The value of 
(1 — e/n)n increases with n, as it can be shown that 

4-(l-~Y>0      f0TX>l, 
dx \       x) 

so that n > 1 implies 1 - e < (1 — s/n)n, and therefore 

(1 - e)Uopt < Usrmd2 < Uopt 

That is, the result returned by representativeJist has a maximum relative error of less than e.     □ 

We will show that the algorithm is of polynomial time complexity. Begin by investigating i,- in 
representativeJist. After trimming, successive elements ("') and ("'+1) of Li must satisfy v,{ < 

Ui+i(l — S), that is 

Ui        1 — 8 

21 



Let / = 1/(1 — 5) and K = |_logy(Mup/wiow) + 2J, where uup > 0 is the u in step 7 of approx^srmd2 
and uiovr > 0 is the smallest utility value, among all tasks, other than 0. 

Lemma 2  There are at most K elements in each Li of step 6 of approx_srmd2. 

Proof Not counting the first element (whose u-value is zero), representativeJist at step 6 removes 
elements that differ in w-value from each other by a factor of less than /. Therefore, the number of 
elements in Li will be at most 

1 + max{ k > 0 | fku\ow < uup }    =   1 + [\ogf(uup/uiow) + lj 

=    [log/(uup/wlow) + 2j 

=   K. 

a 

Theorem 2 approx.srmd2 is a polynomial approximation for SRMD. 

Proof Since steps 4 through 6 in approx„srmd2 are all polynomial in the lengths of the lists they 
handle, and since step 6 by Lemma 2 reduces the number of elements to less than K, it remains to 
be shown that the number of elements after steps 4 and 5 are bounded. 

For step 5 this is trivial since it reduces the number of elements. For step 4, the number of elements 
grows by a factor of |Cj|, so the number of elements after step 4 is bounded by KCmax where 

Cn max   \d\ 
1 = 1,...,71 

The total number of steps in approxsrmd2 therefore is bounded by 

cnKCmax   =   c7iCmax[log/(Uup/Mlow) + 2J 

=      CnCmaX [log1/(1_e/n)(Mup/«low 

<    cnCmax n\n(uup/u\ow) + 2 

for some constant c > 0. 

Therefore, the algorithm is polynomial in time in terms of the input and 1/e. And it is clear that 
the algorithm is polynomial in space as well. D 

The analysis of approxsrmd2 is, in part, modelled after [IK75]. 
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7    MRMD Algorithms 

7.1     Optimal Solution Schemes for MRMD 

7.1.1 Dynamic Programming 

The scheme and algorithm described in this section is an extension of the algorithm described in 
Section 6.2. We will concentrate on the two resources (i.e., m = 2) case, but the scheme and results 
described below extends easily to higher dimensions. 

The challenge here is to extend the tabular or dynamic programming scheme described under Sec- 
tion 6.2 in the presence of multiple resources. As in the single resource case, allocation is in units 
of rf^/Pi and r%aa/P2. 

For the two-resource case, the structure of an optimal solution of the problem can be characterized 
as follows: 

Denote by v(i,pi,p2) the maximum utility achievable when only the first i tasks are considered 
with r™axpi/Pi of resource R\ and r2

iaxp2/P2 of resource R2 for allocation. Define the value of an 
optimal solution recursively in terms of the optimal solutions to subproblems as 

v(i,Pi,P2)=      max    {#(pi,j/2) + v(i - l,pt - p[,p2 - p'2)} 
p[e{o,...,P1} 

p'2€{o,...,P2} 

As for the single source case, v(n,Pi,P2) will be the maximum utility achievable. The set of 
interesting p[ and p'2 values are just all the (starting) discontinuity points of g{. The time complexity 
of the algorithm is 0(nPiP2), which is pseudo-polynomial as well. To save space, the complete 
algorithm which is very similar to approxsrmd2, is omitted. 

The above algorithm extends to multiple resources with time complexity 0(nP^ • • -P^), where m 
is the number of resources involved for consumption and tradeoff. Due to its pseudo-polynomial 
complexity, we expect that its use will be limited for on-line systems, instead it will mainly be used 
for off-line and solution quality measurement of other heuristic and approximation schemes. 

7.1.2 Integer Programming 

From problem formulation 2 (Section 3.3), Integer Programming can be applied. For efficiency, 
we use CPLEX [Div97] MIP callable library which employs a branch-and-bound algorithm. In the 
branch-and-bound method, a series of LP subproblems is solved. A tree of subproblems is built, 
where each subproblems is a node of the tree. The root node is the LP relaxation of the original IP 
problem. 

One negative aspect of the branch-and-bound techniques for solving integer programming problem 
is that the solution process can continue long after the optimal solution has been found, as the tree 
is being exhaustively searched in an effort to guarantee that the current feasible integer solution 
is indeed optimal. As we know, the branch-and-bound tree may be as large as 2n nodes, where 
n equals the number of binary variables.  A problem containing only 30 variables could produce a 
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tree having over one billion nodes. Its applicability for practical large MRMD problem is yet to be 
determined. 

7.2    Approximation and Heuristic Schemes 

To improve the performance of our integer programming with branch-and-bound, described in the 
last section, we use task priority and gradient of dimension-wise quality utility function as heuristics 
for developing integer solution at root node and selecting branching node, variable, and direction. 
Optimality tolerance (such as the gap between the best result and utility of the best node remaining) 
or limits on time, nodes, memory etc. can be set for fast approximation results. 

Local and direct search algorithms are also under development. Searching heuristic will be drawn 
from task profiles including the (approx)gradient of the dimension-wise utility functions, the resource- 
quality relations and other informations provided in the profiles. 

Unlike the algorithms presented in the previous sections, currently we do not have theoretical mea- 
sures of performance for the heuristic approximation schemes. Their experimental performance 
evaluation will be presented in a separate report. 

8    Related Work 

Research on Quality of Service for multimedia applications has gained significant momentum over 
the last few years. Much research has been being conducted on the end-system or end-to-end 
architectures for QoS support [HLP91, KJS91, CSZ92, Nah93, NT94, CCH94, MST94, LNS95, 
CCR95, VWHW95, RP95, LKRM96, KT97], and much more is on link, network and transport 
layer ([ZDE+93, ZF94, FJ95, SCFJ96, SZN97, MS97, SFZ97, CFKS98] to name a few). Most of 
this research has been focused on low-level system mechanisms. The authors consider and work on 
such parameters as period, buffer size, jitter, bandwidth and so on. No doubt these are important 
issues and factors for QoS control, but they are hardly tangible for the ultimate end-users for whom 
QoS is meant to. 

Research on adaptive QoS control [TTCM92, TK93, MJ95, LRM96, NSN+97] brings us a step 
closer to the QoS support from a user's perspective by providing a mechanism in an application to 
accommodate potential dynamic changes in the operating environment. But these mechanisms are 
still mainly system-oriented in that a user has limited influence over the quality of the service to be 
delivered or adapted. 

In coping with the shortage of QoS support from an end-user point of view, we proposed a basic 
framework [Lee97, RLLS97, LS98] that enables the end users to give guidance on the qualities 
they care about and the tradeoffs they are willing to make under potential resource constraints. 
Working from the user's perspective and maximizing the user perceived quality or utility has also 
been addressed in [JLDB95, AAS97, BG98]. In [JLDB95], a user-centric approach is taken, where 
a user's preferences are considered for application runtime behavior control and resource allocation 
planning. Example preferences include statements that a video-phone call should pause a movie 
unless it's being recorded and that video should be degraded before audio when all desired resources 
are not available. These are useful hints for high-level QoS control and resource planning, but are 
inadequate for quantitatively measuring QoS, or analytically planning and allocating resources. 
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An utility model for QoS control is also used in [AAS97]. In [AAS97] the authors propose a mech- 
anism for QoS (re-)negotiation as a way to ensure graceful degradation. They suggest that a user 
should be able to express, in his/her service requests, the spectrum of QoS levels the user can ac- 
cept from the provider, as well as the perceived utility of receiving service at each of these levels. 
But the authors did not address the resource tradeoff problem. Also, no specification method and 
mechanism is provided to facilitate utility data acquisition. Interesting research is being conducted 
in [BG98]. where the author presents a framework for the construction of network-aware applica- 
tions. The basic idea is to allow an application to adapt to its network environment, e.g. by trading 
off the volume (and with it the quality) of the data to be transfered and the time needed for the 
transfer, (liven the framework, the application developer must specify functions to determine the 
relations between quality and size as well as to provide estimates about the effectiveness of various 
transformations to reduce size, and therefore to trade off the volume of the data to be transfered 
and the time need for the transfer. The above mechanism coincides with one of our schemes for 
implementing the resource tradeoff. The model defined in [LS98] can be considered a generalization 
of [BGOs]. Attempts to optimize the system in terms of allocating CPU cycles for feedback control 
applications have been studied in [SLSS96]. 
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